This video features interviews with native people living on atoll islands in Micronesia, so viewers are able to understand the real, current threats that these people are facing due to climate change.

In this video, adapted from KUAC-TV and the Geophysical Institute at the University of Alaska, Fairbanks, viewers learn how one-celled organisms in permafrost may be contributing to greenhouse gas levels and global warming.

This video profiles glaciologist Lonnie Thompson and his research into tropical mountain glaciers as a way to understand climate history. Beginning in the 1970s, Thompson recognized that tropical ice cores contain information relating to tropical climate phenomena, including El NiÃo events and monsoons. These phenomena are not archived in ice from polar regions. Thompson explains that his archive of ice cores is full of clues that, taken together with records collected from around the world, can help scientists create a timeline that tells Earth's climate story.

In this activity, students use Google Earth to explore global temperature changes during a recent 50 - 58 year period. They also explore, analyze, and interpret climate patterns of 13 different cities, and analyze differences between weather and climate patterns.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

In this activity students work with real datasets to investigate a real situation regarding disappearing Arctic sea ice. The case study has students working side-by-side with a scientist from the National Snow and Ice Data Center and an Inuit community in Manitoba.

This series of five activities about ocean acidification incorporates real data from NOAA. The activities are organized as a pathway, with five levels increasing in sophistication, and different data-based inquiry activities.

Animations of CO2 concentration in the free troposphere, as simulated by NOAA's ESRL CarbonTracker.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

In this video clip, Climate Central's Dr. Heidi Cullen explains that what we've known as "normals" for our climate, during the past decade, will very likely change soon. The new climate normal will provide key information for decisions we make in the future, ranging from what we plant, to what we pay for energy, and even to where we take a vacation.

Pages