This video is the third in a three-part series by the Sea Change project, about scientists' search for Pleiocene beaches in Australia and elsewhere to establish sea level height during Earth's most recent previous warm period. This segment features the research of Jerry Mitrovica, Harvard geophysicist.

This interactive map allows students to experiment with decadal average temperature projections. Overall temperatures are expected to rise throughout the century and this tool demonstrates those projected measurements.

This video provides an excellent summary of the role of the oceans and ocean life and makes the point that despite the important role of life in the oceans, there is still much to be learned about the details of the oceanic biota.

This interactive National Weather Service interactive visualization includes outlook maps for 6-10 day, 8-14 day, 1 month, and 3 month temperature and precipitation patterns in the US, as well as a hazards outlook and drought information.

This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

This video provides an overview of how computer models work. It explains the process of data assimilation, which is necessary to ensure that models are tied to reality. The video includes a discussion of weather models using the Goddard Earth Observing System (GEOS-5) model and climate models using the MERRA (Modern Era Retrospective Analysis for Research and Applications) technique.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

In this JAVA-based interactive modeling activity, students are introduced to the concept of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

This video is simple in its appearance, but it contains a wealth of relevant information about global climate models.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.