This is a short experiment to demonstrate the concept of thermal expansion of water when heated, as an analogy to thermal expansion of oceans due to global warming.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

In this video from Young Voices for the Planet, four middle-school girls (The Green Team) talk about their efforts to work with their peers to reduce the carbon footprint of their school and how they made the school more energy efficient.

The heart of this activity is a laboratory investigation that models the production of silicon. The activity is an investigation of silicon: the sources, uses, properties, importance in the fields of photovoltaics (solar cells/renewable energy) and integrated circuits industries, and, to a limited extent, environmental impact of silicon production.

This three-part, hands-on investigation explores how sunlight's angle of incidence at Earth's surface impacts the amount of solar radiation received in a given area. The activity is supported by PowerPoint slides and background information.

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

Students explore their own Ecological Footprint in the context of how many Earths it would take if everyone used the same amount of resources they did. They compare this to the Ecological Footprint of individuals in other parts of the world and to the Ecological footprint of a family member when they were the student's age.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

This introductory video describes the basic principles of residential geothermal heat pumps.