In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

In this role-playing activity, learners are presented with a scenario in which they will determine whether the Gulf Stream is responsible for keeping Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.

This video features CU Boulder Professor Jeff Mitton and his research team, who study the effects of mountain pine beetle infestations on the forest ecology in the Rocky Mountains. They explain the pine beetle life cycle and how they attack trees. An outlook into the future is also provided.

Key figure from the 2007 Intergovernmental Panel on Climate Change (IPCC) report that shows changes in global average surface temperature, global average sea level, and Northern Hemisphere snow cover from as far back as 1850.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

This animation depicts global surface warming as simulated by NCAR's Community Climate System Model (CCSM) Version 3. It shows the temperature anomalies relative to the end of the 19th century (1870-1899), both over the entire globe and as a global average. The model shows the temporary cooling effects during the 5 major volcanic eruptions of this time period, and then the model's estimates of warming under the different scenarios taken from the fourth IPCC report.

This as a 2-part activity in which students study the properties of CO2 in a lab and then use Web resources to research different types of carbon capture. A video lecture accompanies the activity.

This video shows some of the most dramatic fluctuations to our cryosphere in recent years, using visuals created with a variety of satellite-based data.

In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

Pages