In this visualization students can explore North American fossil fuel CO2 emissions at very fine space and time scales. The data is provided by the Vulcan emissions data project, a NASA/DOE funded effort under the North American Carbon Program (NACP).

This video segment highlights how the U.S. military is the single largest user of energy in the nation, but it is also trying to reduce its carbon bootprint. Scenes taped at Fort Irwin and Camp Pendleton show the Army and Marines experimenting with wind and solar in order to reduce the number of fuel convoys that are vulnerable to attack.

This simplified animation of a geothermal power plant from the U.S. Department of Energy illustrates commonalities with traditional power-generating stations. While there are many types of geothermal power plants, this animation shows a generic plant.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Inter-connections among climate issues, public stakeholders and the governance spheres are investigated through creative simulations designed to support learners' understanding of international climate change negotiations.

In this activity, students will learn the difference between sea ice and glaciers in relation to sea level rise. They will create and explore topographic maps as a means of studying sea level rise and how it will affect Alaska's coastline.

In this video segment, adapted from a student video produced at Northwest Indian College in Bellingham Washington, Native American elders discuss the impact of climate change on salmon populations and the importance of restoring balance in the natural world.

This resource is about the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

Students calculate the cost of the energy used to operate a common three-bulb light fixture. They then compare the costs and amount of CO2 produced for similar incandescent and compact fluorescent light bulbs. Students also do a short laboratory activity to visualize why two bulbs, which give off the same amount of light, use different amounts of electrical energy.

In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

In this video clip, Climate Central's Dr. Heidi Cullen explains that what we've known as "normals" for our climate, during the past decade, will very likely change soon. The new climate normal will provide key information for decisions we make in the future, ranging from what we plant, to what we pay for energy, and even to where we take a vacation.

Pages