This video stitches together nine separate videos about energy sources (hydro, coal, geothermal, nuclear, wind, biofuels, solar, natural gas, and oil) from the Switch Energy site. Videos can be viewed as a group, or separately, each under their own title.

A short video on the causes of ocean acidification and its effects on marine ecosystems.

This is a polar map of permafrost extent in the Northern Hemisphere. A sidebar explains how permafrost, as it forms and later thaws, serves as both a sink and source for carbon to the atmosphere. Related multimedia is a slideshow of permafrost scientists from U. of Alaska, Fairbanks, collecting permafrost data in the field.

This animated map shows prevailing surface wind direction and strength across the United States.

In this activity, students explore what types of energy resources exist in their state by examining a state map to identify the different energy sources in their state, including the state's renewable energy potential.

This interactive visualization created by FRED (Free Energy Data), displays energy supply (by source) and demand (by use) for each state in the US from 1960 to 2010; forecasts through 2035 are available as well.

FRED is an open platform to help state and local governments, energy planners and policy-makers, private industry, and others to effectively visualize, analyze and compare energy-use data to make better energy decisions and sustainable strategies.

This activity supports educators in the use of the activities that accompany the GLOBE Program's Earth System Poster 'Exploring Connections in Year 2007'. Students identify global patterns and connections in environmental data that include soil moisture, insolation, surface temperature, cloud fraction, precipitation, world topography/bathymetry, aerosol optical thickness, and biosphere (from different times of the year) with the goal of recognizing patterns and trends in global data sets.

This teaching activity addresses regional variability as predicted in climate change models for the next century. Using real climatological data from climate models, students will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for Minnesota and California to explore this regional variability. Students import the data into a spreadsheet application and analyze it to interpret regional differences. Finally, students download data for their state and compare them with other states to answer a series of questions about regional differences in climate change.

In this activity learners investigate the link between ocean temperatures and hurricane intensity, analyze instrumental and historical data, and explore possible future changes.

This activity includes an assessment, analysis, and action tool that can be used by classrooms to promote understanding of how the complex current issues of energy, pollution, supply and consumption are not just global but also local issues.

Pages