This National Geographic video explains the origins of the El NiÃo Southern Oscillation using animations and shows the impacts on humans, wildlife and habitat, particularly in the United States.

This animation depicts the carbon cycle in a fashion that is suited for younger audiences. The video discusses how carbon enters and exits the environment through both natural and human-driven ways.

In this activity, students learn about the tools and methods paleoclimatologists use to reconstruct past climates. In constructing sediment cores themselves, students will achieve a very good understanding of the sedimentological interpretation of past climates that scientists can draw from cores.

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

This is the first of three short videos showcasing the dramatic changes in Alaska's marine ecosystems through interviews with scientists and Alaska Natives. This introduction to the impacts of climate change in Alaska includes interviews with Alaska Natives, commentary by scientists, and footage from Alaska's Arctic.

This is a sequence of 5 classroom activities focusing on the El NiÃo climate variability. The activities increase in complexity and student-directedness. The focus of the activities is on accessing and manipulating real data to help students understand El NiÃo as an interaction of Earth systems.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This video describes the role that dendrochronology plays in understanding climate change, especially changes to high elevation environments at an upper tree line. Dendrochronologists from the Big Sky Institute sample living and dead trees, describe how correlations between trees are made, and explain how tree cores record climate changes.

In this activity, students are introduced to tree rings by examining a cross section of a tree, also known as a 'tree cookie.' They discover how tree age can be determined by studying the rings and how ring thickness can be used to deduce times of optimal growing conditions. Next, they investigate simulated tree rings applying the scientific method to explore how climatic conditions varied over time.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

Pages