In this activity, students use Google Earth and team up with fictional students in Chersky, Russia to investigate possible causes of thawing permafrost in Siberia and other Arctic regions. Students explore the nature of permafrost and what the effects of thawing permafrost mean both locally and globally. Next, students use a spreadsheet to explore soil temperature data from permafrost boreholes and surface air temperature datasets from in and around the Chersky region for a 50-year time span.

This hands-on activity explores the driving forces behind global thermohaline circulation.

In this activity, students learn about how climate change is affecting the Arctic ecosystem and then investigate how this change is impacting polar bear populations. Students analyze maps of Arctic sea ice, temperature graphs, and polar bear population data to answer questions about the impact of climate change on the Arctic ecosystem.

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

This activity is a hands-on guided inquiry activity designed to highlight the role of an ice shelf on slowing the movement of continental ice sheets in Antarctica. Students build a model of Antarctica and both continental glaciers and ice shelves using paper models of the land and slime for glaciers and ice. Students use their model to explore the impact of recent and potential ice shelf melting and break-up.

This engaging activity introduces students to the concept of albedo and how albedo relates to Earth's energy balance.

In this activity, students explore energy production and consumption by contrasting regional energy production in five different US regions.

In this activity, students compare two photographs (with time spans of 30-100 years between photos) of specific Alaskan glaciers to observe how glaciers have changed over the time interval. Activity is a good kickoff for learning about glaciology - how and why glaciers form, grow and shrink, and their relation to climate change.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

This hands-on activity is a kinesthetic game illustrating the dynamics of the carbon cycle. Acting as carbon atoms, students travel from one carbon reservoir to another; at each reservoir they determine, by rolling dice, how long they stay in the reservoir or how likely it is that they will move to another carbon reservoir.

Pages