In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

A simple click-through animation from Scripps Institute's Earthguide program breaks the complex topic of the global energy balance into separate concepts. Slides describe the different pathways for incoming and outgoing radiation.

This is an animation from the US Environmental Protection Agency's Students Guide to Global Climate Change, one of a series of web pages and videos about the basics of the greenhouse effect.

In this mock mission, students become members of a research team and conduct a series of tasks to audit Earth's radiative budget. They use a Java Applet/visual viewer to access satellite data sets, calculate the balance of incoming and outgoing solar radiation, and defend their answers to a number of science questions.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

This short video, is the fifth in the National Academies Climate Change, Lines of Evidence series. It focuses on greenhouse gases, climate forcing (natural and human-caused), and global energy balance.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance and greenhouse gases on the Earth System.

The purpose of this activity is to identify global patterns and connections in environmental data contained in the GLOBE Earth Systems Poster, to connect observations made within the Earth Systems Poster to data and information at the National Snow and Ice Data Center, and to understand the connections between solar energy and changes at the poles, including feedback related to albedo.