This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

This activity covers the role that the oceans may play in climate change and how climate change may affect the oceans. It is lesson 8 in a nine-lesson module Visualizing and Understanding the Science of Climate Change.

This animated visualization was created for the planetarium film 'Dynamic Earth'. It illustrates the trail of energy that flows from atmospheric wind currents to ocean currents.

In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

This video provides an overview of changes happening in the Arctic.

In this video segment, a team of scientists seeks evidence to support their hypothesis that atmospheric warming -- either now or in the past -- may explain why water has formed beneath the West Antarctic ice sheet, causing ice streams that flow much more quickly than the rest of the ice sheet. This phenomenon has important implications for potential sea level rise.

This resource consists of an interactive table with a comprehensive list of 29 Greenhouse Gases, their molecular structures, a chart showing a time series of their atmospheric concentrations (at several sampling sites), their global warming potential (GWP) and their atmospheric lifetimes. References are given to the data sets that range from the mid-1990s to 2008.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

In this visualization students can explore North American fossil fuel CO2 emissions at very fine space and time scales. The data is provided by the Vulcan emissions data project, a NASA/DOE funded effort under the North American Carbon Program (NACP).

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

Pages