The video offers a simple and easy-to-understand overview of climate change. It poses basic questions such as 'What is it?' and 'How will it effect us?' and effectively answers those questions.

This interactive map allows students to experiment with decadal average temperature projections. Overall temperatures are expected to rise throughout the century and this tool demonstrates those projected measurements.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

Animations of CO2 concentration in the free troposphere, as simulated by NOAA's ESRL CarbonTracker.

This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

This activity uses geophysical and geochemical data to determine climate in Central America during the recent past and to explore the link between climate (wet periods and drought) and population growth/demise among the Maya. Students use ocean drilling data to interpret climate and to consider the influence of climate on the Mayan civilization.

In this video, adapted from KUAC-TV and the Geophysical Institute at the University of Alaska, Fairbanks, viewers learn how one-celled organisms in permafrost may be contributing to greenhouse gas levels and global warming.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

Pages