The activity takes a hands-on approach to understanding El Niño by physically showing and feeling the process. It consists of an El Niño demo to be performed by the teacher and observed by the class as well as an experiment to be conducted by the students themselves individually or in pairs to illustrate the connection between water temperature and atmospheric temperature. Students are asked to make conclusions based on their findings and then examine the chain of events stemming from El Niño.

In this activity, students will determine the environmental effects of existing cars and a fleet consisting of their dream cars. They compute how many tons of heat-trapping gases are produced each year, how much it costs to fuel the cars, and related information. Then, students research and prepare a report about greener transportation choices.

This video segment, adapted from NOVA scienceNOW, addresses how new technology can help monitor and modernize the infrastructure of the U.S. power grid, which is ill-equipped to handle our increasing demand for electricity. Video provides a great overview of how electricity is generated and how the grid works.

Students use Google Earth to analyze oil consumption per capita in the US and around the world. Students then use spreadsheets to create graphs and calculate statistics regarding per capita energy use among various categories.

This is a basic animation/simulation with background information about the greenhouse effect by DAMOCLES. The animation has several layers to it that allow users to drill into more detail about the natural greenhouse effect and different aspects of it, including volcanic aerosols and human impacts from burning fossil fuels.

In this activity, students research various topics about ocean health, e.g. overfishing, habitat destruction, invasive species, climate change, pollution, and ocean acidification. An optional extension activity has them creating an aquatic biosphere in a bottle experiment in which they can manipulate variables.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This activity is a learning game in which student teams are each assigned a different energy source. Working cooperatively, students use their reading, brainstorming, and organizational skills to hide the identity of their team's energy source while trying to guess which energy sources the other teams represent.

This lesson guides a student inquiry into properties of the ocean's carbonate buffer system, and how changes in atmospheric carbon dioxide levels may affect ocean pH and biological organisms that depend on calcification.

This interactive graphic outlines the carbon cycle, with clickable text boxes that explain and elaborate each component.