This video is accompanied by supporting materials including background essay and discussion questions. The focus is on changes happening to permafrost in the Arctic landscape, with Alaska Native peoples and Western scientists discussing both the causes of thawing and its impact on the ecosystem. The video shows the consequences of erosion, including mudslides and inland lakes being drained of water. An Inuit expresses his uncertainty about the ultimate effect this will have on his community and culture.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

Two graphs from the NASA Climate website illustrate the change in global surface temperature relative to 1951-1980 average temperatures. The NASA plot is annotated with temperature-impacting historic events, which nicely connect an otherwise challenging graphic to real-world events.

This resource is about the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

This narrated slide presentation shows the carbon cycle, looking at various parts of this biogeochemical sequence by examining carbon reservoirs and how carbon is exchanged among them and the atmosphere.

This interactive shows the different components of the ocean biological pump, i.e., how carbon in the form of either plankton or particles moves into the ocean's depths. It illustrates the situation at the surface, 0-100 meters, 100-500 meters, and below 500 meters.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

This activity illustrates the carbon cycle using an age-appropriate hook, and it includes thorough discussion and hands-on experimentation. Students learn about the geological (ancient) carbon cycle; they investigate the role of dinosaurs in the carbon cycle, and the eventual storage of carbon in the form of chalk. Students discover how the carbon cycle has been occurring for millions of years and is necessary for life on Earth. Finally, they may extend their knowledge to the concept of global warming and how engineers are working to understand the carbon cycle and reduce harmful carbon dioxide emissions.

In this activity, students examine the energy required to make a cheeseburger, calculate its associated carbon footprint, and discuss the carbon emissions related to burger production. The activity is geared toward Canadian students but can be customized to the consumption patterns and carbon footprint of American students since the resource references the amount of burgers consumed by Americans in addition to Canadians.

In this activity students research the inter-dependencies among plants and animals in an ecosystem and explore how climate change might affect those inter-dependencies and the ecosystem as a whole.

Pages