This short video shows an example of melting alpine glaciers in the Austrian Alps (Goldberg Glacier). Disappearing alpine glaciers have social and environmental impacts, including the decline of fresh water supplies and contributing to sea level rise.

In this activity for undergraduates, students explore the CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction) model results for differences between the modern and the Last Glacial Maximum (LGM) and discover the how climate and vegetation may have changed in different regions of the Earth based on scientific data.

This climate change interactive modeling simulation simulates the interactions among different sets of variables related to climate change. This is a facilitated guided-inquiry exercise.

This hands-on activity introduces students to the process of fermenting different carbohydrate sources into ethanol. Teachers demonstrate yeasts' inability to metabolize certain food sources.

In this activity, students learn how carbon cycles through the Earth system by playing an online game.

Students conduct an energy audit to determine how much carbon dioxide their family is releasing into the atmosphere and then make recommendations for minimizing their family's carbon footprint. Students are specifically asked to understand the units of power and energy to determine the cost of running various household appliances. Finding the amount of carbon dioxide emitted for different types of energy and determining ways of reducing carbon dioxide output is the outcome of the lesson.

This animated slideshow introduces biodiesel as a fuel alternative. With concern about the use of petroleum-based fuels at an all-time high, biodiesel is experiencing a popularity surge. And algaeâotherwise known to some as pond scumâ are grabbing headlines as the next potential biodiesel superstar. But how and why do algae make oil? And why do they make so much of it? In this audio slide show, U.C. Berkeley's Kris Niyogi describes the process and its potential.

This teaching activity addresses regional variability as predicted in climate change models for the next century. Using real climatological data from climate models, students will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for Minnesota and California to explore this regional variability. Students import the data into a spreadsheet application and analyze it to interpret regional differences. Finally, students download data for their state and compare them with other states to answer a series of questions about regional differences in climate change.

This video segment is adapted from Building Big, a PBS series hosted by David Macaulay. It explores Hoover Dam's hydroelectric capabilities by explaining how it is able to harness the potential energy stored in the reservoir and convert it to electricity. It also discusses environmental impacts of the dam and others like it.

A computer animation on the reason for the seasons. Voice-over describes the motion of Earth around the sun to show how the sun's light impacts the tilted Earth at different times of the year, causing seasonal changes.