In this video scientists discuss possible rates of sea level rise, storms and resulting damage, rising temperatures and melting ice, and their collective effects on ecosystems.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

This video is one of a seven, Climate Change: Lines of Evidence series, produced by the the National Research Council. It outlines and explains what evidence currently exists in support of humans playing a role in contributing to the rise in atmospheric carbon dioxide levels.

This carbon calculator, developed by the EPA, guides students in calculating their carbon footprint and then using that information to make decisions about how to reduce their carbon emissions.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

In this video, students learn that the Exxon Valdez oil spill in Alaska in 1989 was not the sole cause of the decline of species in the local ecosystem. Rather, an explanation is posited for why some animal populations were already in decline when the spill occurred. Many of these animals share a common food: the sand lance, a fish whose populations have shrunk with the steady rise in ocean temperature that began in the late 1970s.

This narrated slide show gives a brief overview of coral biology and how coral reefs are in danger from pollution, ocean temperature change, ocean acidification, and climate change. In addition, scientists discuss how taking cores from corals yields information on past changes in ocean temperature.

Pages