In this activity, students use Google Earth to investigate ideal features of wind farms.

This video explores what scientists know about how changes in global climate and increasing temperatures affect different extreme weather events.

This is a multi-step, interactive tool for users to identify potential risks (to people, buildings, infrastructure, contamination, land) for selected coastal areas in the US, using scenarios of water level rising (as a result of tides, sea level rise, and storm surge) from 0-10 feet. Tool provides local, regional and national resources as guidance for managing risk.

This video shows some of the most dramatic fluctuations to our cryosphere in recent years, using visuals created with a variety of satellite-based data.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

In this activity students use NASA satellite data to study changes in temperature and snow-ice coverage in the South Beaufort Sea, Alaska. They will then correlate the data with USGS ground tracking of polar bears and relate their findings to global change, sea ice changes, and polar bear migration and survival.

This short video uses animated imagery from satellite remote sensing systems to illustrate that Earth is a complex, evolving body characterized by ceaseless change. Adapted from NASA, this visualization helps explain why understanding Earth as an integrated system of components and processes is essential to science education.

In this activity learners work in pairs or small groups to evaluate energy use in their school and make recommendations for improved efficiency. Students create and use an energy audit tool to collect data and present recommendations to their class. Further communication at the school and district level is encouraged.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

This animation illustrates how the hardiness zones for plants have changed between 1990 and 2006 based data from 5,000 National Climatic Data Center cooperative stations across the continental United States.

Pages