In this activity, students investigate how scientists monitor changes in Earth's glaciers, ice caps, and ice sheets. The activity is linked to 2009 PBS Nova program entitled Extreme Ice.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options projected out to 2100.

A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, and at the same time of year. These images illustrate how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

Video and animations of sea level from NASA's Climate website. Since 1992, NASA and CNES have studied sea surface topography as a proxy for ocean temperatures. NASA Missions TOPEX/Poseidon, Jason 1 and Jason 2 have been useful in predicting major climate, weather, and geologic events including El Nino, La Nina, Hurricane Katrina, and the Indian Ocean Tsunami.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

This video is narrated by climate scientist Richard Alley. It examines studies US Air Force conducted over 50 years ago on the warming effects of CO2 in the atmosphere and how that could impact missile warfare. The video then focuses on the Franz Josef glacier in New Zealand; the glacier is used to demonstrate a glacier's formation, depth of snow fall in the past, and understand atmospheric gases and composition during the last Ice Age. Supplemental resources are available through the website.

This is Unit 1 of a larger module and centers on the fundamental concepts of major storms and community resilience. In this unit, students acquire a vocabulary related to storm systems and risk, engage in practical exercises on event probability and frequency, and complete written activities and oral presentations that reinforce these concepts, using two case studies as examples.

This is an interactive map that illustrates the scale of potential flooding in Alabama, Mississippi, and Florida due to projected sea level rise. It is a collaborative project of NOAA Sea Grant Consortium and the US Geological Survey. It is a pilot project, so there is some possibility that the resource may not be maintained over time.

This video looks at the impact of changing climate on animal habitats around the world, showing how different creatures are responding to changing temperatures and precipitation patterns.

This series of visualizations show the annual Arctic sea ice minimum from 1979 to 2015. The decrease in Arctic sea ice over time is shown in an animation and a graph plotted simultaneously, but can be parsed so that the change in sea ice area can be shown without the graph.