In this interactive activity students will create a very simple climate model. They use worksheets, chips/tokens, and follow rules for heat exchange. The activity only models temperature but there are instructions for adaptations of the model, such as rule changes for an atmosphere with increased levels of CO2.

Climate has varied in the past, but today's climate change rate is much more drastic due to human activity. Students explore past climate cycle graphs and compare the cycles with the current rate of change.

This animation depicts real-time wind speed and direction at selected heights above Earth's surface, ocean surface currents, and ocean surface temperatures and anomalies.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

In this activity, students use the GLOBE Student Data Archive and visualizations to explore changes in regional and seasonal temperature patterns.

This activity supports educators in the use of the activities that accompany the GLOBE Program's Earth System Poster 'Exploring Connections in Year 2007'. Students identify global patterns and connections in environmental data that include soil moisture, insolation, surface temperature, cloud fraction, precipitation, world topography/bathymetry, aerosol optical thickness, and biosphere (from different times of the year) with the goal of recognizing patterns and trends in global data sets.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

In this activity, students use a physical model to learn the basics of photosynthesis and respiration within the carbon cycle.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

Pages