Students focus on the three interconnected choices global society faces as Earth's climate continues to changeâsuffer, adapt, and mitigateâto analyze and predict current and future impacts to Earth's systems. Using videos excerpted from NOVA: Decoding the Weather Machine, students explore ways that adaptation and mitigation strategies can work at various levels to minimize suffering and then develop an evidence-based action plan for their local community.

This learning activity is a climate change musical for K-12, youth groups or faith organizations. Shine weaves together climate science and performance art into a fun and powerful story, which spans 300 million years of geological time to convey how humanity, energy, and climate are interrelated.

Students model the effect of greenhouse gases on Earth's atmosphere. They find that greenhouse gases, such as carbon dioxide and methane, are uniquely shaped to catch and pass on infrared radiation, and so they are responsible for the warmth we enjoy on Earth. The children discuss how the addition of greenhouse gases by human activities leads to further warming and what steps we can take to slow it.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.

This short animated video provides a general overview of the atmosphere, carbon dioxide, and the greenhouse effect.

Interactive cards with gasses portrayed as super heroes are provided for Water Vapor, Carbon Dioxide, Methane, Ozone, Nitrous Oxide, and Chlorofluorocarbons. On one side of the card is an explanation of how the gas is in its natural form and by clicking on the card, it flips to reveal the impact it has on the atmosphere.

This video succinctly explains the mechanism of the natural greenhouse effect and the cause of global climate change (anthropogenic global warming). It is short, basic, and to the point. It's also available in 12 languages!

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore, and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.

This video addresses two ways in which black carbon contributes to global warming. When in the atmosphere, it absorbs sunlight and generates heat, warming the air. When deposited on snow and ice, black carbon changes the albedo of the surface. The video is effective in communicating about a problem frequently underrepresented in discussions of climate change and also public health.

This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

Pages