This NASA animation shows the levels of atmospheric carbon dioxide over different time scales. Viewers can compare the last 400,000 years, last 1000 years, and last 25 years. The data come from the Lake Vostok ice cores (400,000 BC to about 4000 BC), Law Dome ice cores (1010 AD to 1975 AD) and Mauna Loa observations (1980 to 2005).

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This is an interactive map of California and the Sierra Nevada mountains, showing how the amount of water stored in the snowpack will vary under different climate scenarios. The tool shows observations and projections from 1950 to 2090, and uses low or high emission scenarios to model future snowpack. The tool can be adjusted to show different months of the year and various climate models, graphed by site.

This carbon calculator, developed by the EPA, guides students in calculating their carbon footprint and then using that information to make decisions about how to reduce their carbon emissions.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

This activity involves plotting and comparing monthly data on atmospheric C02 concentrations over two years, as recorded in Mauna Loa and the South Pole, and postulating reasons for differences in their seasonal patterns. Longer-term data is then examined for both sites to see if seasonal variations from one site to the other carry over into longer term trends.

In this 45-60 minute high-stakes board game, everyone wins or everyone loses. As they play, groups of three to four children ages 8 to 13 build an understanding of how human actions impact global change. As teams, children play a game in which chance and choice determine the fate of a lone polar bear on an ice floe.

This 10 minute video builds connections between topics that are important in climate science such as: the impact of variations in Earth's orbit and wobble on it's axis on climate; how the cores being sampled fit into the bigger climate picture; connecting greenhouse gases to melting ice and sea level changes; the sensitivity of the ice melt / sea level rise relationship; and computer model simulations showing connections between ice sheets and sea level.
The companion website provides resources, an extensive list of activities, teacher guides, posters, and more.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.

Pages