Students analyze and interpret graphs to compare the flow of shortwave energy from the Sun toward China over the course of a year on cloudy versus clear days.

This video uses film of the Arctic and Arctic researchers as well as animations to discuss feedbacks in the Arctic climate system related to sea ice, the ocean, and clouds. It explains concepts such as albedo and positive and negative feedbacks. The narrative includes discussion of current research and a summary which explains why understanding feedbacks is important.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

Included in this lesson are opportunities to weave cloud study into Science, Language Arts, and Math. This lesson includes a demonstration of cloud formation, data collection and analysis of air temperatures and cloud coverage across time, and creation of an acrostic poem on the word CLOUDS.

This unit allows students to investigate past changes in Earth's climate. Students first explore relationships in climate data such as temperature, solar radiation, carbon dioxide, and biodiversity. They then investigate solar radiation in more depth to learn about changes over time such as seasonal shifts. Students then learn about mechanisms for exploring past changes in Earth's climate such as ice cores, tree rings, fossil records, etc. Finally, students tie all these together by considering the feedbacks throughout the Earth system and reviewing an article on a past mass extinction event.

In this activity, students use the GLOBE Student Data Archive and visualizations to explore changes in regional and seasonal temperature patterns.

This interactive module allows students and educators to build models that explain how the Earth system works. The Click and Learn application can be used to show how Earth is affected by human activities and natural phenomena.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

Pages