This PBS Learning Media activity addresses drought basics, including its causes and impacts and ways to assess it, by using media from NOAA and NASA. It defines the types of drought, the impacts, monitoring, and responses to drought. Use this resource to stimulate thinking and questions on the complexity of drought and to identify some variables used in defining drought.

Using US Drought Monitor data and its classification system, this interactive tool tracks drought in the continental US by county, from 2000 to the present.

In this activity, students make and manipulate physical shoreline models to discover the features of resilient shorelines and to critically evaluate the impacts of rising seas. Students will use NOAA's Sea Level Rise Viewer to observe a coastal area of interest and predict the consequences of sea level rise on people, the environment, and the economy. Though the curriculum references North Carolina, this lesson will work for all coastal areas.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

This visualization focuses on public acceptance of climate science. The set of interactive maps illustrates public opinion on a variety of climate beliefs, risk perceptions, and policy support. The data is from the Yale Project on Climate Communication and is updated every one to two years. The most recent data at the time of this record is 2019.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options projected out to 2100.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This carbon calculator, developed by the EPA, guides students in calculating their carbon footprint and then using that information to make decisions about how to reduce their carbon emissions.

This interactive addresses the question if we can reduce CO2 emissions by 20% of 1990 levels and help avoid dangerous climate change? Users of this interactive can manipulate changes to various sources and uses (supply and demand) of energy with the goal of reducing C02 emissions in Great Britain by 80% in the year 2050.

In this interactive, students can investigate a typical hydrogen fuel cell prototype car from its fuel cell stacks to its ultracapacitor, a kind of supplementary power source.

The limited-production vehicle seen in this feature is a Honda 2005 FCX, which is typical of the kinds of hydrogen fuel cell cars that some major automakers are researching and developing.

Pages