Skip to main content

I don't want to dismiss the possibility that the PDO or other sea surface temperature patterns could affect the precipitation pattern this year. I recognize that there are some studies suggesting that the PDO can modulate ENSO teleconnections (like this one), which would suggest that the El Nino precipitation pattern tends to be weaker during the negative phase of the PDO. However, I maintain that one has to be careful and diligent to demonstrate that the PDO sea surface temperatures separate from ENSO are the drivers of the teleconnection modulation, and such careful studies have not yet produced convincing evidence, in my opinion. I think we may be able to see why from the analysis in this post - the average performance of forecasts produced by linear regression on the Nino-3.4 index (the red and blue diamonds) is about the same as the NMME forecasts (dark grey dots). If the PDO or any other factor were an important predictor, we would expect the NMME to capture that and produce superior forecasts to the Nino-3.4 regression-based forecasts. But we don't see that. 

You might say, maybe the NMME models just aren't up to the task of capturing the PDO modulation. That's possible! (Though one of the models in that paper linked above that captures the PDO modulation, SPEAR, is also an NMME model.) Also, it's not lost on me that the NMME models are drier in the Southwest than we would expect for a strong El Nino, so perhaps they are picking up on something interfering with the canonical pattern this winter. The bottom line is that I am taking your comment as a serious possibility, but there are reasons why it's challenging to disentangle what's happening (and the noise of chaotic weather variability - the topic of this post - is one of those big challenges). In any case, I will be watching how things evolve very closely.